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Nomenclature

D diameter ðmŁ
f Fanning friction factor
Nu Nusselt number
Pe Peclet number\ Re = Pr
Pr Prandtl number
r radial coordinate ðmŁ
Re Reynolds number
T temperature ðKŁ
u axial velocity ðm s−0Ł
u? ~uctuating component of velocity ðm s−0Ł
x distance from the wall ðmŁ[

Greek symbols
a thermal di}usivity ðm1 s−0Ł
dM\ dH nondimensional momentum and heat penetra!
tion depths
n momentum di}usivity ðm1 s−0Ł
r density ðkg m−2Ł[

Subscripts
b ~uid bulk
H uniform heat ~ux at the wall
n direction normal to the wall
T uniform wall temperature
w wall
z axial direction[

0[ Introduction

The task of studying transport phenomena in turbulent
~ow within a completely rational framework has\ so far\
been beset by current lack of understanding of turbu!

lence[ Nevertheless\ the need for reliable tools to design
heat and mass transfer equipment has prompted con!
siderable research e}ort over several decades[ That has
led to a number of empirical models of turbulent trans!
port[

Two approaches have been utilized to model the trans!
port process at a wall boundary] one is based on the
Prandtl mixin` len`th concept and eddy diffusivity\ the
second one is based on the surface renewal concept _rst
introduced by Danckwerts ð0Ł[ Eddy di}usivity models
have proved quite useful in a large variety of cases[ How!
ever\ these empirical models provide little insight into
the real mechanism underlying turbulent transport[ As
a result\ the thermal eddy di}usivity\ as related to the
momentum eddy di}usivity\ cannot be assessed a priori
without further empirical assumptions[

More recently\ the periodic surface renewal idea has
received much attention in modeling heat and mass trans!
fer in a turbulent ~ow[ The basic assumption considers
the surface to be covered by a mosaic of laminar ~owing
patches of ~uid\ where transport occurs only by molec!
ular di}usion[ These ~uid patches are supposed to be
periodically replaced by new ones "surface renewal
model# ð1Ł or to form viscous layers that periodically
grow and collapse "growth!breakdown model# ð2Ł[ These
are unsteady state one dimensional models[ It has also
been proposed that the ~uid patches are arranged in a
regular repetitive pattern of steady state boundary layers
developing for a given length ð3Ł[ These simple models
are able to explain a number of qualitative features
observed in turbulent transport[ In order to improve
quantitative agreement with experimental data\ these
early concepts have been extensively elaborated[

It is not our intent to provide a critical review of the
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many eddy di}usivity or surface renewal models[
However\ it should be borne in mind that these models
appeal to postulated mechanistic pictures of turbulence
and that the concepts and the quantities involved have no
fundamental relationship with the correlated turbulent
~uctuations\ the sole quantities that actually determine
turbulent transport[ The purpose of this work is to con!
struct a theory able to predict turbulent heat transport
from fundamental information\ namely the thermal
di}usivity and the normal turbulence intensity in the ~uid
bulk[ The theory applies to heat transfer in turbulent
incompressible ~ow for Pr ð 0[ The theoretical pre!
dictions are compared with available experimental data
and empirical correlations to heat transport in liquid
metals[ For the sake of simplicity we shall refer to ~ow
through cylindrical tubes in the following analysis[ How!
ever\ the results apply for arbitrarily shaped ducts as well[

1[ Theory

1[0[ Turbulent transport near a wall boundary

With reference to steady state incompressible ~ow
through a circular pipe\ two terms contribute to the radial
momentum ~ux per unit area[ The contribution due to
molecular di}usion may be written as FL"x¼ # �
−"n:x#ru"x#\ 9 ¾ x¼ ¾ x[ The contribution deriving from
the correlated turbulent ~uctuations is FT � ru?zu?n"x#[
By virtue of u?z � 9 and u?n � 9 the following inequality
subsists]

=FT"x¼ # = ¾ rzu?z
1"x¼ # = zu?n

1"x¼ #[

zu?z
1 is a fraction of the local average velocity u"x#

ð4Ł[ zu?n
1 takes on _nite values and is zero at the wall[

As x approaches zero\ n:x becomes much greater than
zu?n

1\ whereas zu?z
1 is always smaller than u"x#[ The

result is] =FT= ð =FL= near the wall[ Thus\ although tur!
bulent ~uctuations of the ~uid velocity do take place
even very close to the wall surface\ turbulence does not
contribute to momentum transfer within a region
su.ciently close to the wall[ This region will be sub!
sequently termed momentum diffusion re`ion[ An analo!
gous conclusion may be arrived at for heat transfer in
turbulent ~ow[ However\ the di}usion regions for
momentum and heat transfer are\ in general\ di}erent[ It
follows that the momentum and energy equations\ valid
in the laminar regime\ also apply to turbulent ~ow within
the momentum and the heat di}usion regions respec!
tively[ The nondimensional velocity u� � u:ub as a func!
tion of the nondimensional radial coordinate r� � r:D is
readily obtained]

u� � 0
du�
dr�1r��0:1 $r�

1−
0
3% "0a#

also valid for turbulent ~ow\ within the momentum
di}usion region[ In the case of a uniformly heated slug

~ow\ an analogous expression applies for the non!
dimensional temperature T� �"T−Tw#:"Tb−Tw#]

T� � 0
dT�
dr� 1r��0:1 $r�

1−
0
3% "0b#

The latter applies for turbulent ~ow as well\ within the
heat di}usion region\ provided that the Prandtl number
is very small and the viscous heat source is negligible[
For laminar and slug ~ow equations "0a# and "0b# apply
over the entire tube radius[ This enables "du�:dr�#r��0:1

and "dT�:dr�#r��0:1 to be calculated[ However\ in the
turbulent regime eqns "0# are invalid far from the wall[
In the latter case the velocity gradient essentially extin!
guishes within a short distance from the wall "herein
referred to as momentum penetration depth#\ where the
contribution from molecular di}usion to the total
momentum ~ux cannot be disregarded[ Apparently\ the
{slope| of the nondimensional velocity pro_le]
"du�:dr�#r��0:1\ prescribed by eqn "0a#\ is only dependent
on the momentum penetration depth scaled to D[ Like!
wise\ in the turbulent regime\ the scaled heat penetration
depth dictates the {slope| of the nondimensional tem!
perature pro_le near the wall "eqn "0b##[ Importantly\ it
appears that\ in the turbulent regime\ "du�:dr�#r��0:1 and
"dT�:dr�#r��0:1 depend respectively on the scaled momen!
tum and heat penetration depths through the same kind
of relationship[ This point is discussed in detail in the
next paragraph[ It is also shown in that paragraph how
these scaled lengths are fundamentally related to certain
nondimensional numbers\ which account for turbulence[
Here we observe that\ since eqns "0a# and "0b# are for!
mally identical\ the dimensionless velocity and tempera!
ture pro_les are also quantitatively identical whenever
the scaled momentum and heat penetration depths are
equal[

1[1[ The penetration depth

In turbulent pipe ~ow\ in addition to momentum ~ux\
radial heat or mass ~ux may also occur by two mech!
anisms[ One mechanism involves processes at a molecular
scale\ the other one involves intermittent bulk ~uid
motion\ though at a local scale\ in the radial direction[
These two mechanisms act simultaneously[ It was
observed in the previous paragraph that the molecular
mechanism prevails in the vicinity of the wall "di}usion
region#[ In such region a velocity "temperature# gradient
persists[ Conversely\ far from the wall\ momentum "heat#
is prevailingly carried by the radial ~uctuating ~uid
motion[ In this region\ which is sometimes referred to as
turbulent core\ the time averaged ~uid velocity "tempera!
ture# is comparatively uniform[ There must also be a
transition region where both mechanisms are important
and the velocity "temperature# pro_le levels o}[ In order
to estimate at which distance from the wall such an inter!
mediate region is located\ one should compare the trans!
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fer rate from the wall to the ~uid due to molecular
di}usion to the one due to turbulence[ The rate of
momentum "heat# di}usion from the wall to a surface in
the ~uid at a distance x is] n:x "a:x#[ On the other hand\
the time averaged rate of momentum "heat# transfer
through this surface due to the radial intermittent ~uid
motion is] zu?n

1"x#[ Comparison of these two rates
a}ords an estimate of the distance of the transition region
from the wall\ i[e[\ the momentum penetration depth]
x¼M ½ n:zu?n

1[ As a result the following scaling behavior
subsists for the nondimensional momentum penetration
depth]

dM �
n

Dzu?n
1

"1a#

An analogous expression applies for the heat penetration
depth\

dH �
a

Dzu?n
1

"1b#

zu?n
1 should be evaluated at x � dM = D and x � dH = D

respectively in expressions "1a# and "1b#[ In the turbulent

core\ zu?n
1 is only slightly dependent on the wall distance

ð4\ 5Ł[ Moreover\ experimental data by Laufer show that
the dependency of the normal turbulence intensity scaled
to the friction velocity ut on the Reynold number is fairly
weak in the turbulent core ð5Ł[ It can be calculated using
Laufer|s data that zu?n

1:ub is also weakly dependent on
Re within this region[0 Accordingly\ we regard zu?n

1:ub

as a constant in the turbulent core[ The error introduced
by the latter approximation is unimportant as discussed
in the next section[ The turbulent core extends from the
centerline of the pipe up to the momentum penetration
depth[ As a result\ expressions "1a# and "1b# assume a
more convenient form]

dM�
n

Dub

"2a#

dH�
a

Dub

"2b#

It is noteworthy that\ while relation "2a# is always valid\
relation "2b# holds true for Pr ð 0 only[ In fact\ relation
"2b# requires that zu?n

1*evaluated at x � dH = D*scale
as ub\ which is the case only if dH × dM[ The latter con!
dition is satis_ed when Pr is much less than unity[ The
right!hand sides of relations "2a# and "2b# are the recip!
rocal of the Reynolds and the Peclet number respectively[

It was anticipated in the previous paragraph that\ given
the formal identity of eqns "0a# and "0b# and of their
respective boundary conditions\ "du�:dr�#r��0:1 and

0 For instance\ zu?n
1:ut evaluated at r� � 9[34 increases by

only 00) as Re varies from 4×093 to 4×094\ whilst zu?n
1:ub

decreases by 04) approximately[

"dT�:dr�#r��0:1 depend on the scaled momentum and heat
penetration depth\ respectively\ in the same way[ This
point is more thoroughly discussed hereafter[ In fact\
there is one subtle di}erence between the momentum and
the heat transfer problem[ In the very low Prandtl limit
dM is much smaller than dH[ Accordingly\ zu?n

1 is nearly
constant over essentially the entire heat penetration
depth[ On the other hand\ zu?n

1 is not constant within
the momentum penetration depth and it becomes larger
as the wall distance increases[ We discuss below whether
this di}erence implies di}erent dependencies of
"du�:dr�#r��0:1 and "dT�:dr�#r��0:1 on dM and dH respec!
tively[ In this regard we observe that the velocity "tem!
perature# pro_le in the neighborhood of x � dM = D
"x � dH = D# depends solely on the ratio between n:x "a:x#
and zu?n

1"x# evaluated at x � dM = D "x � dH = D#\ inde!
pendent of whether zu?n

1"x# is a constant or increases
with the wall distance inside the penetration depth[ On
the other hand\ if\ for a chosen ~uid\ the momentum
"heat# penetration depth and the velocity "temperature#
pro_le in the nei`hborhood of x � dM = D "x � dH = D# are
assigned*the latter condition being equivalent to assign!
ing zu?n

1 at x � dM = D "x � dH = D#*it is plausible that
the radial momentum "heat# ~ux at x � dM = D
"x � dH = D# is determined[ Accordingly\ "du:dr#r�D:1 and
"dT:dr#r�D:1 would also be determined\ whatever
zu?n

1"x# inside the penetration depth[ The above argu!
ment suggests that the dependency of zu?n

1 on x inside
the penetration depth*which renders the momentum
transfer problem di}erent from the heat transfer prob!
lem*does not a}ect the velocity or temperature gradient
at the wall[ It would follow that "du�:dr�#r��0:1 and
"dT�:dr�#r��0:1 are functions of the sole scaled momen!
tum and heat penetration depth respectively and that
these functions are identical[

This result a}ords a fundamental analogy between heat
and momentum transfer[ Since the nondimensional vel!
ocity and temperature gradients at the wall relate to the
Fanning friction factor f and to the Nusselt number
respectively as]

f =
Re
1

� − 0
du�
dr�1r�0:1

\ Nu � − 0
dT�
dr� 1r��0:1

\

the analogy may also be stated as follows]
"a# The Nusselt number is a function of the Peclet num!

ber only[
"b# The relationship that links Nu to Pe is identical with

the one relating f = Re:1 to Re[
The di}erence should be noted between the Reynolds
analogy and the one derived here[ This analogy applies
for Pr ð 0 and uniform heat ~ux at the wall surface[ The
case of constant wall temperature is investigated next[

1[2[ Constant wall temperature

The heat penetration depth is much smaller than the
curvature radius of the wall\ when the Peclet number is
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su.ciently high[ Accordingly\ the curvature of the wall
is disregarded in the following analysis and we shall refer
to turbulent ~ow through a slit[ However\ the results are
anticipated to be quite general\ to a good approximation[
At _rst let us consider slug ~ow through a slit[ The
expressions for the nondimensional temperature pro_les
with uniform heat ~ux and constant wall temperature
read]

T� � 0
dT�
dx�1x��9 $x�−

x�1

1 % "constant heat ~ux#

"3a#

T� �X0
dT�
dx�1x��9

= sin 0x�X0
dT�
dx�1x��91

"constant wall temperature# "3b#

x� is the distance from the wall divided by the half!
width of the slit[ Heat conduction along the axis has been
neglected in the derivation of eqn "3b#[ This approxi!
mation is acceptable if Pe is su.ciently high[ The dimen!
sionless temperature gradient at the wall is equal to 2
for uniformly heated ~ow or to p1:3 for uniform wall
temperature[ Equations "3a# and "3b# apply for slug ~ow
as well as in the heat di}usion region of a turbulent
~ow\ provided that Pr is very small[ Accordingly\ the
nondimensional temperature pro_les for these two cases
are geometrically akin[ However\ they extend over
two di}erent length scales] 9¾ x� ¾ 0 for slug ~ow^
9 ¾ x� ¾ dH for turbulent ~ow[ As a result\ the ratio]
"dT�:dx�#x��9

turbulent
:"dT�:dx�#x��9

slug
scales as the ratio between

these two lengths] 0:dH[ This holds true for uniform heat
~ux as well as for uniform temperature at the wall[ This
conclusion\ along with knowledge of "dT�:dx�#x��9

slug
and

expression "2b#\ a}ords a relationship\ also valid for tur!
bulent ~ow\ between the Nusselt numbers at constant heat
~ux NuH and constant wall temperature NuT at the same
Peclet number]

NuT �
p1

01
NuH "4#

Equation "4# applies to a turbulent incompressible ~ow
for low Pr and high Pe[

2[ Comparison with experiments and discussion

2[0[ Constant heat ~ux

According to the analogy obtained in the previous
section\ Nusselt numbers have been calculated\ at several
Pe\ using the friction factor chart for hydraulically
smooth tubes[ These are plotted in Fig[ 0 together with
experimental data points and empirical correlations for
heat transfer in ~uids with very low Prandtl number
"liquid metals#[ It is well known that obtaining good heat

transfer data for molten metals and metal alloys is a
di.cult task\ also owing to uncertainty of the physical
properties\ ensuing from oxides formation[ As a conse!
quence\ literature experimental data for liquid metals are
somewhat scattered[

It should be noted that the present theory relies on the
assumption\ suggested by experimental evidence\ that\ in
the turbulent core\ the relative turbulence intensity nor!
mal to the wall\ zu?n

1:ub\ is independent of the Reynolds
number as well as of the wall distance[ Actually\ after an
abrupt increase in the di}usion region\ the radial tur!
bulence intensity attains a weak maximum "peak# near
the wall and decreases very slightly as the wall distance
increases further ð4\ 5Ł[ Moreover\ the peak grows slightly
and shifts towards the wall boundary at increasing Re
ð5Ł[ This is re~ected in a weak explicit dependency of dH

and of Nu on the Reynolds number[ However\ this is a
small e}ect\ as also supported by recent empirical cor!
relations for heat transfer to liquid metals ð6\ 7Ł[ The
latter predicts a dependency on Re9[90[ In fact\ the results
of the present theory agree with experimental data
remarkably well "Fig[ 0#[ This con_rms that considering
the radial turbulence intensity to be constant in the tur!
bulent core is\ in fact\ a good approximation[

2[1[ Constant wall temperature

Equation "4# shows that the ratio between the Nusselt
moduli at constant wall temperature and constant heat
~ux is approximately p1:01 "½9[71# at low Prandtl
number[ This result is exact for dH ð 0\ i[e[\ for high
values of the Peclet number[ An order of magnitude esti!
mate of dH may be obtained from the Nusselt number]
dH ½ 0:Nu[ So far as heat transfer to liquid metals is
concerned\ dH ranges from 9[90 to 9[0 in most cases of
practical interest[ Hence\ eqn "4# is anticipated to be
satisfactorily correct in such cases[ Calculations predict
that the ratio between the two moduli ranges from 9[62 to
9[77\ depending upon the Peclet number ð8Ł[ Few accurate
experimental studies are available on turbulent heat
transfer in molten metals ~owing through pipes at uni!
form wall temperature[ Nusselt numbers at constant wall
temperature have been obtained from data at constant
heat ~ux using eqn "4# and are compared with exper!
imental data and the empirical correlation to be found in
the literature ð09Ł in Fig[ 1[ Even in this case the agree!
ment between theoretical predictions and experiments is
remarkably good\ especially at high Pe[

3[ Concluding remarks

The analysis presented in this work a}orded a new
analogy between heat and momentum transport[ The
analogy applies to turbulent incompressible ~ow through
an arbitrarily shaped duct for Pr ð 0[ The correlated
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Fig[ 0[ Nu as a function of Pe for circular tubes with uniform heat ~ux at the wall] +*this study^ �*ref[ ð01Ł^ �* ref[ð00Ł^ r*ref[
ð6Ł[

Fig[ 1[ Nu as a function of Pe for circular tubes with uniform wall temperature] +*this study^ �*ref[ ð09Ł\ experimental data points^
r*ref[ ð09Ł\ empirical correlation[

turbulent ~uctuations are the fundamental quantities
underlying turbulent transport[ Previous models have
either proposed empirical expressions for such quantities
"eddy di}usivity models# or postulated a physical picture
of the transport mechanism at the wall surface "surface
renewal#[ A rational approach to transport in turbulent
~ow must be based on the primary ingredients of tur!
bulent transport\ i[e[\ the turbulence ~uctuation and the
molecular momentum\ heat or mass di}usivity[ The pre!
sent theory is derived directly from these _rst principles[
This is the main feature of the present work[ The roles of

the velocity ~uctuation normal to the wall and of the
molecular di}usivity in turbulent transport are
addressed[ Also demonstrated\ with scaling arguments\
is how the interplay of these two quantities determines
the momentum or heat transport rate[ It is known that
heat transfer data and correlations are generally not
available for complex equipment with enhanced heat
transfer capability[ Obtaining heat transfer data for such
devices is a di.cult task\ especially if the ~uid is a liquid
metal[ From a practical perspective\ the analogy derived
in this work could be used to infer correlations for heat
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transfer in some systems with complex geometry\ simply
from pressure drop measurements[
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